Math

Day 1
- Do Now—Daily Spiral Review 2.4
- Re-teach 2.4 to review Rounding
- Practice 2.4 (Graded)
- Complete the multiplication drill Day 1 or 15 minutes of Successmaker if available

Day 2
- Do Now—Daily Spiral Review 2.8
- Re-teach 2.8 to review Adding 3-digit numbers
- Practice 2.8 (Graded)
- Complete the multiplication drill Day 2 or 15 minutes of Successmaker if available

Day 3
- Do Now—Daily Spiral Review 4.4
- Re-teach 4.4 to review Subtracting 3-digit numbers
- Practice 4.4 (Graded)
- Complete the multiplication drill Day 3 or 15 minutes of Successmaker if available

Day 4
- Do Now—Daily Spiral Review 7.1
- Re-teach 7.1 to review Division as Sharing
- Practice 7.1 (Graded)
- Complete the multiplication drill Day 4 or 15 minutes of Successmaker if available

Day 5
- Do Now—Daily Spiral Review 8.6
- Re-teach 8.6 to review Problem Solving
- Practice 8.6 (Graded)
- Complete the multiplication drill Day 5 or 15 minutes of Successmaker if available

Day 6
- Do Now—Daily Spiral Review 9.3
- Re-teach 9.3 to review Extending Tables
- Practice 9.3 (Graded)
- Complete the multiplication drill Day 6 or 15 minutes of Successmaker if available
Day 7

- Do Now—Daily Spiral Review 12.5
- Re-teach 12.5 to review Equivalent Fractions
- Practice 12.5 (Graded)
- Complete the multiplication drill Day 7 or 15 minutes of Successmaker if available

Day 8

- Do Now—Daily Spiral Review 16.5
- Re-teach 16.5 to review Area
- Practice 16.5 (Graded)
- Complete the multiplication drill Day 8 or 15 minutes of Successmaker if available

Day 9

- Do Now—Daily Spiral Review 16.1
- Re-teach 16.1 to review Perimeter
- Practice 16.1 (Graded)
- Complete the multiplication drill Day 9 or 15 minutes of Successmaker if available

Day 10

- Do Now—Daily Spiral Review 17.2
- Re-teach 17.2 to review Time to the Minute
- Practice 17.2 (Graded)
- Complete the multiplication drill Day 10 or 15 minutes of Successmaker if available

*****ALL PAGES MUST BE COMPLETE TO RECEIVE FULL CREDIT*****

*****THERE WILL BE A MULTIPLICATION QUIZ UPON RETURN TO SCHOOL*****
Choose the best answer.

1. A leopard can live as many as 23 years. A monkey can live 14 more years than a leopard. How many years can a monkey live?
 A 37
 B 36
 C 27
 D 9

2. An encyclopedia has 24 volumes. Mrs. Anderson lent 7 volumes to Katie. How many volumes does Mrs. Anderson have left?
 A 7
 B 17
 C 21
 D 31

3. Ms. Robinson leaves work at the time shown on the clock below.

 At what time does she leave work?
 A 3:05
 B 3:25
 C 5:03
 D 5:15

4. Write 3,549 in expanded form.

5. Len has these bills and coins in his pocket.

 What is the total value of the money in Len's pocket?

6. There are 16 counties in Maine. California has 42 more counties than Maine. How many counties does California have?

7. Marisa is counting wheels on bicycles and tricycles at the park. She counted 3 vehicles and 7 wheels. How many bicycles and how many tricycles did Marisa see?
<table>
<thead>
<tr>
<th>x8</th>
<th>x9</th>
<th>x10</th>
<th>x10</th>
<th>x3</th>
<th>x5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>9</td>
<td></td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rounding

You can use place value to round to the nearest ten or hundred.

Find the rounding place. If the digit in the ones or the tens place is 5, 6, 7, 8, or 9, then round to the next greater number. If the digit is less than 5, do not change the digit in the rounding place.

Round 17 to the nearest ten: 20

Explain. 7 is in the ones place. Round to the next greater ten.

Round 153 to the nearest ten. 150

Explain. Because 3 is in the ones place and 3 is less than 5, the digit in the tens place doesn’t change.

Round 575 to the nearest hundred. 600

Explain. Because the 7 in the tens place is 5 or greater, round to the next greater hundred.

1. Round 63 to the nearest ten: __________

Explain. __________

Round each number to the nearest ten.

2. 58
3. 71
4. 927
5. 3,121

Round each number to the nearest hundred.

6. 577
7. 820
8. 2,345
9. 8,750

10. Reasoning If you live 71 mi from a river, does it make sense to say you live about 80 mi from the river? Explain.
Rounding

Round to the nearest ten.

1. 37 2. 93 3. 78 4. 82 5. 24

6. 426 7. 329 8. 815 9. 163 10. 896

Round to the nearest hundred.

16. 529 17. 877 18. 634 19. 329 20. 587

21. Number Sense Tyrell says 753 rounds to 800. Sara says 753 rounds to 750. Who is correct? Explain.

22. Explain It How would you use a number line to round 148 to the nearest ten.

23. There are 254 counties in Texas. What is that number rounded to the nearest ten? What is that number rounded to the nearest hundred?

24. Which number does not round to 400?

 A 347 B 369 C 413 D 448
Choose the best answer.

1. Barry wants to make a three-dimensional shape with 2 circles and 1 rectangle. What is the name of the shape that Barry can make?
 A Cube
 B Cylinder
 C Pyramid
 D Prism

2. Which property of addition is shown below?
 \[7 + 4 = 4 + 7 \]
 A Associative
 B Commutative
 C Identity
 D Inverse

3. A report said there are 600 students at Springfield Elementary School. The number was rounded to the nearest ten. How many students could there actually be?
 A 557
 B 593
 C 604
 D 636

Write each missing number.

4. \[9 + \square = 9 \]

5. \[7 + 8 = \square + 7 \]

6. Yasmine bowled two games. She scored 87 on her first game and 78 on her second game. What was Yasmine's combined score?

7. Write the word form of 2,803.

8. Doug is reading two books. The first book is 322 pages. The second book is 589 pages. Rounded to the nearest hundred, about how many pages will Doug read?

9. Name an activity that takes about one hour.
Day 2

4 x 3 10 x 7 8 x 5 9 x 2 6 x 5 3 x 8 8 x 2 7 x 3 7 x 2 4 x 10

5 x 8 10 x 10 8 x 6 3 x 3 2 x 2 6 x 3 3 x 5 6 x 10 8 x 7 8 x 8

5 x 5 10 x 6 5 x 3 9 x 7 6 x 7 8 x 9 1 x 2 8 x 8 6 x 4 7 x 3

1 x 7 1 x 6 10 x 9 10 x 5 6 x 6 2 x 9 2 x 5 3 x 4 2 x 3 2 x 7

8 x 4 10 x 3 4 x 9 8 x 3 2 x 6 2 x 8 9 x 3 9 x 5 9 x 6 8 x 9

Time: _______ minutes Score: _______ out of 50
Adding 3-Digit Numbers

Find 237 + 186.

<table>
<thead>
<tr>
<th>237</th>
<th>Hundreds</th>
<th>300</th>
<th>Tens</th>
<th>30</th>
<th>Ones</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1: Add the ones. 7 ones + 6 ones = 13 ones
Regroup. 13 ones = 1 ten, 3 ones

Step 2: Add the tens. 1 ten + 3 tens + 8 tens = 12 tens
Regroup. 12 tens = 1 hundred, 2 tens

Step 3: Add the hundreds.
1 hundred + 2 hundreds + 1 hundred = 4 hundreds

Add together the hundreds, tens, and ones.

400 + 20 + 3 = 423

Estimate. Then find each sum.

1. 118
 + 146

2. 283
 + 147

3. 542
 + 109

4. 220
 + 479

5. Find the sum of 456 and 238.

6. Add 109 and 656.

7. Estimation Estimate to decide which sum is less than 600: 356 + 292 or 214 + 356.

Adding 3-Digit Numbers

Estimate. Then find each sum.

1. 329
 + 468

2. 148
 + 231

3. 555
 + 222

4. 472
 + 515

5. 396
 + 428

6. 645
 + 79

7. 536
 + 399

8. 268
 + 422

9. 633
 + 210

10. Critical Thinking Follow the steps below to find how many combined points were scored by Howie and Theo.

 a. Write a number sentence to show how to solve the problem.

 b. Estimate the total points scored by Howie and Theo.

 c. Find the actual total.

11. Explain It Write an addition story for two 3-digit numbers. Write the answer to your story.

12. Sharon can run 278 yards in one minute. Pete can run 145 more yards than Sharon in one minute. How many yards can Pete run in one minute?

13. There were 752 people at a town meeting last week. There were 163 more people this week. How many people attended this week's meeting?

 A 815
 B 825
 C 915
 D 925
Choose the best answer.

1. Mr. Vargas drove 128 miles before lunch and 237 miles after lunch. How many miles did Mr. Vargas drive altogether?
 A 465
 B 455
 C 365
 D 355

2. Natalie is going to start watching a movie at three-thirty in the afternoon. Which clock below shows the time Natalie will start watching the movie?
 A
 B
 C
 D

3. Caroline sold 57 raffle tickets. Trina sold 39 raffle tickets. How many more raffle tickets did Caroline sell than Trina?

4. Complete the pattern.
 39, 36, 33, ___, ___, ___

5. What is 85 rounded to the nearest ten?

6. Alicia bought a pair of sunglasses for $12. She also bought a pair of sandals for $21. She paid with two $20 bills. How much change should she receive back from the cashier?

7. Order these numbers from greatest to least.
 7,362 7,623 6,732
<table>
<thead>
<tr>
<th>Time</th>
<th>Minutes</th>
<th>Score</th>
<th>Date: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x 9</td>
<td>0 x 10</td>
<td>0 x 10</td>
<td>0 x 10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5 x 10</td>
<td>4 x 2</td>
<td>2 x 2</td>
</tr>
<tr>
<td>8</td>
<td>3 x 5</td>
<td>3 x 5</td>
<td>3 x 5</td>
</tr>
<tr>
<td>5</td>
<td>3 x 5</td>
<td>4 x 5</td>
<td>5 x 2</td>
</tr>
<tr>
<td>2</td>
<td>3 x 5</td>
<td>4 x 5</td>
<td>5 x 2</td>
</tr>
<tr>
<td>6</td>
<td>6 x 10</td>
<td>6 x 10</td>
<td>6 x 10</td>
</tr>
<tr>
<td>8</td>
<td>6 x 5</td>
<td>6 x 5</td>
<td>6 x 5</td>
</tr>
<tr>
<td>4</td>
<td>5 x 6</td>
<td>5 x 6</td>
<td>5 x 6</td>
</tr>
<tr>
<td>2</td>
<td>2 x 5</td>
<td>2 x 5</td>
<td>2 x 5</td>
</tr>
<tr>
<td>6</td>
<td>6 x 10</td>
<td>6 x 10</td>
<td>6 x 10</td>
</tr>
<tr>
<td>8</td>
<td>8 x 5</td>
<td>8 x 5</td>
<td>8 x 5</td>
</tr>
<tr>
<td>4</td>
<td>4 x 2</td>
<td>4 x 2</td>
<td>4 x 2</td>
</tr>
<tr>
<td>2</td>
<td>2 x 3</td>
<td>2 x 3</td>
<td>2 x 3</td>
</tr>
</tbody>
</table>

Name:
Subtracting 3-Digit Numbers

Find 726 – 238.

Estimate: 700 – 200 = 500, so the answer should be about 500.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>First subtract the ones. Regroup 1 ten into 10 ones.</td>
<td>Subtract the tens. Regroup 1 hundred into 10 tens.</td>
<td>Subtract the hundreds.</td>
</tr>
<tr>
<td>1 16 726</td>
<td>11 6 16 726</td>
<td>11 6 16 726</td>
</tr>
<tr>
<td>238 8</td>
<td>238 8</td>
<td>238 8</td>
</tr>
</tbody>
</table>

Is your answer correct?
Check by adding: 488 + 238 = 726.
It checks.

Find each difference. Estimate and check answers for reasonableness.

5. 423 – 156 = ______ 6. 327 – 159 = ______

7. The town library had 634 CDs for rent. During one week, 288 of them were rented. How many CDs were left?

8. Number Sense If you had to subtract 426 from 913, how many times would you need to regroup? How can you tell?
Subtracting 3-Digit Numbers

Find each difference. Estimate and check answers for reasonableness.

1. 732 2. 621 3. 369 4. 267 5. 527
 -328 -153 -185 -78 -279

 -436 -189 -244 -456 -363

14. Tulsa is how many miles closer to Omaha than Dallas? _____

15. Tulsa is how many miles closer to Omaha than Chicago? _____

16. **Strategy Practice** Jill is going on a trip from Chicago to Omaha to Tulsa. Bill will travel from Dallas to Omaha. How much farther will Jill travel than Bill?
 a. What do you need to do first?

 __

 __

 b. What is the next step?

 __

 __

 c. Solve the problem.
 _____ miles

17. Texas has 254 counties. California has 58 counties and Florida has 67 counties. How many more counties does Texas have than California and Florida combined?

 A 125 B 129 C 139 D 196
Choose the best answer.

1. If there are 7 days in a week, how many days are there in 36 weeks?
 A 212 C 252
 B 242 D 272

2. Attendance at Sunday's football game was 735 people. That was 247 more people than attended the previous Sunday. How many people were at the previous Sunday's game?
 A 982 C 498
 B 588 D 488

3. What fraction of the figure below is shaded?

 A \(\frac{1}{6} \) C \(\frac{4}{5} \)
 B \(\frac{1}{5} \) D \(\frac{5}{6} \)

4. Find the product.
 \[10 \times 9 \]

 A 100 C 80
 B 90 D 70

The table shows how many points are scored for different events in football. Use the table for 5 and 6.

<table>
<thead>
<tr>
<th>Score</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touchdown</td>
<td>6</td>
</tr>
<tr>
<td>Field Goal</td>
<td>3</td>
</tr>
<tr>
<td>2-point Conversion</td>
<td>2</td>
</tr>
<tr>
<td>Point After Touchdown</td>
<td>1</td>
</tr>
</tbody>
</table>

5. The Green Wave scored 3 touchdowns, 2 two-point conversions, and 1 field goal. How many total points did the Green Wave score?

6. A point after touchdown or a 2-point conversion can only be scored after a touchdown. How can a team score exactly 15 points?

7. What is the missing number in the pattern below?
 9, 17, 25, ———, 41, 49
Day 4
Division as Sharing

Division shows how many items are in each group or how many equal groups there are.

There are 15 counters that are going to be put into 5 groups. How many counters will be in each group?

There are 15 counters. There are 5 groups. There are 3 counters in each group. So, \(15 \div 5 = 3\).

Use counters or draw a picture to solve.

1. 12 tennis balls, 4 cans
 How many tennis balls in each can?

2. 20 cookies, 5 bags
 How many cookies in each bag?

3. 16 apples, 2 baskets
 How many apples in each basket?

4. 20 fingers, 4 hands
 How many fingers on each hand?

5. One box contains 12 granola bars. Two bars are in each package. How many packages are in each box of granola bars?

6. Number Sense Could you divide 14 shirts into two equal groups? Why or why not?
Division as Sharing

Use counters or draw a picture to solve.

1. 24 people, 4 rows
 How many people in each row?

2. 18 marbles, 2 people
 How many marbles for each person?

3. 25 apples, 5 trees
 How many apples on each tree?

4. 21 books, 3 shelves
 How many books on each shelf?

Complete each division sentence.

5. \[\frac{15}{3} = \]

6. \[\frac{16}{4} = \]

7. Explain It Ron and Pam each have 20 pennies. Ron will put his pennies into 4 groups. Pam will put her pennies into 5 groups. Who will have more pennies in each group? Explain.

8. There are 28 days in February. There are 7 days in a week. How many weeks are there in February?

A 3 B 4 C 5 D 6
Choose the best answer.

Reba measured the temperature at 7:00 A.M. and again at 4:00 P.M. The thermometers below show the temperatures she measured. Use these to answer 1 and 2.

<table>
<thead>
<tr>
<th>°F</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

7:00 A.M. 4:00 P.M.

1. What is the temperature at 7:00 A.M.?
 A 85°F
 B 73°F
 C 60°F
 D 50°F

2. What is the change in temperature from 7:00 A.M. to 4:00 P.M.?
 A 10 degrees
 B 13 degrees
 C 15 degrees
 D 18 degrees

3. Maria is putting away her craft supplies. She has 3 boxes for her paints. Each box holds 9 paint bottles. What is the total number of paint bottles the boxes hold?
 A 28
 B 27
 C 18
 D 12

4. What is the next number in the pattern below?
 3, 15, 27, 39, ____________

5. For back-to-school night, Ms. Ming's class can seat 42 people. She has chairs arranged in 6 equal rows. How many chairs are in each row?

6. Compare. Use <, >, or =.
 $8 \div 8$ ____________ $7 \div 1$

7. How do you write $6,000 + 300 + 70$ in standard form?

8. The book that Lauren is reading has 378 pages. The book she just finished had 313 pages. After finishing both books, about how many pages will Lauren have read in all?

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x 2</td>
<td>4 x 5</td>
<td>5 x 6</td>
<td>6 x 7</td>
<td>7 x 8</td>
<td>8 x 9</td>
<td>9 x 10</td>
<td>2 x 3</td>
<td>4 x 4</td>
<td>2 x 5</td>
</tr>
<tr>
<td>7 x 1</td>
<td>10 x 2</td>
<td>2 x 3</td>
<td>2 x 4</td>
<td>3 x 5</td>
<td>4 x 6</td>
<td>5 x 7</td>
<td>6 x 8</td>
<td>7 x 9</td>
<td>8 x 10</td>
</tr>
<tr>
<td>2 x 6</td>
<td>6 x 2</td>
<td>3 x 7</td>
<td>5 x 3</td>
<td>4 x 8</td>
<td>7 x 4</td>
<td>6 x 9</td>
<td>2 x 5</td>
<td>6 x 6</td>
<td>3 x 8</td>
</tr>
<tr>
<td>3 x 6</td>
<td>6 x 3</td>
<td>8 x 3</td>
<td>8 x 5</td>
<td>5 x 6</td>
<td>6 x 5</td>
<td>7 x 7</td>
<td>2 x 9</td>
<td>6 x 6</td>
<td>3 x 3</td>
</tr>
<tr>
<td>5 x 6</td>
<td>10 x 3</td>
<td>3 x 7</td>
<td>3 x 3</td>
<td>7 x 5</td>
<td>5 x 7</td>
<td>6 x 9</td>
<td>5 x 10</td>
<td>7 x 2</td>
<td>8 x 4</td>
</tr>
<tr>
<td>6 x 6</td>
<td>8 x 4</td>
<td>5 x 5</td>
<td>7 x 7</td>
<td>6 x 8</td>
<td>8 x 5</td>
<td>4 x 10</td>
<td>9 x 2</td>
<td>6 x 6</td>
<td>8 x 6</td>
</tr>
</tbody>
</table>

Day 5
Problem Solving: Draw a Picture and Write a Number Sentence

You can draw a picture to help you divide.

Neil has 54 CDs. He has the CDs equally placed among 6 shelves. How many CDs can go on each shelf?

Draw a diagram to show the problem. Make 6 rows with the same number of CDs until you reach 54.

Write a number sentence: \(54 \div 6 = 9\).

Check your answer by using multiplication: \(6 \times 9 = 54\).

Neil can put 9 CDs on each shelf.

Draw a diagram to show what you know.
Then write a number sentence and solve.

1. There are 5 cars taking students to a museum. Each car can seat 4 students. How many students can go to the museum?

2. There are 16 players competing in the beach volleyball tournament. There are 8 teams competing. How many players are on each team?

3. Explain It: Sandy said she could use addition to answer question 1. How could this be done?
Problem Solving: Draw a Picture and Write a Number Sentence

In 1 and 2, draw a diagram to show what you know. Then write a number sentence and solve.

1. Maria bought 5 cans of tennis balls. Each can contained 3 tennis balls. How many tennis balls did Maria buy altogether?

2. In Ms. Ramirez's class, there are 28 students. They sit in 4 equal rows. How many students are in each row?

In 3 and 4, use the chart.

3. A community center has 3 tennis teams and 5 basketball teams. No one is on both teams. How many athletes are there?

<table>
<thead>
<tr>
<th>Players on Team</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport</td>
<td>Players</td>
</tr>
<tr>
<td>Tennis</td>
<td>2</td>
</tr>
<tr>
<td>Basketball</td>
<td>5</td>
</tr>
<tr>
<td>Softball</td>
<td>10</td>
</tr>
</tbody>
</table>

4. Number Sense Fabio said that there are 3 times as many people on a basketball team as on a tennis team. Is he correct? Explain why or why not.

Write a number sentence and solve. Use this information for 5 and 6.

Marshall sleeps 8 hours each day.

5. How many hours does Marshall sleep in one week?

6. How many hours is Marshall awake each day?

7. Tricia spent $12 to rent ice skates. She rented them for 4 hours. Which number sentence can you write to find how much it costs to rent skates for one hour?

A $12 - 4 = □
B $12 + 4 = □
C $12 \times 4 = □
D $12 \div 4 = □
Choose the best answer.

1. There are 21 students in one class and 19 in another. The lab has 34 computers. How many students will need to share a computer when both classes are in the lab at the same time?
 A 12
 B 9
 C 7
 D 6

2. Keira runs 8 blocks every day. What is the total number of blocks Keira runs in a week?
 A 56
 B 49
 C 42
 D 15

3. What is the next number in the pattern below?
 63, 52, 41, 30, __________
 A 29
 B 21
 C 19
 D 11

4. Find the product.
 \[9 \times 8\]

5. Warren has $726 in his savings account. He wants to buy a bicycle that costs $348. If he buys the bike, how much money will be left in his savings account?

6. What fraction of the figure is shaded?

7. What is a rule for the pattern below?
 9, 16, 23, 30, ...

8. There are 8 people in each cleanup group. A total of 72 people will participate in the cleanup. How many groups are there?
<table>
<thead>
<tr>
<th>x10</th>
<th>x3</th>
<th>x4</th>
<th>x10</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>6</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Extending Tables

A table is an organized way to show a pattern.

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>?</td>
</tr>
</tbody>
</table>

Each pair of values follows some rule. If you can find a rule that works for all the pairs, you can extend the table.

What is the missing number in this table?

Step 1

Find a rule for the pattern.

The first 4 weeks are shown. You can divide to find the pattern.

\[
rac{42}{6} = 7 \\
rac{35}{5} = 7 \\
rac{21}{3} = 7 \\
rac{7}{1} = 7
\]

There are 7 days in one week.

Step 2

Use your rule to find the missing number.

Multiply the days in 1 week by the number of weeks.

\[
8 \times 7 = 56
\]

The missing number is 56.

Complete each table.

1. | Cars | Wheels |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

2. | Old Price | New Price |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$63</td>
<td>$53</td>
</tr>
<tr>
<td>$48</td>
<td>$38</td>
</tr>
<tr>
<td>$37</td>
<td>$27</td>
</tr>
<tr>
<td>$26</td>
<td>$16</td>
</tr>
</tbody>
</table>

3. | Weight of Salad in Ounces | 6 | 10 | 14 | 18 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Weight of Container in Ounces</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
Extending Tables

Find the missing numbers.

1. | Number of Cats | Number of Legs |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

2. | Money Earned | Money Saved |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$25</td>
<td>$15</td>
</tr>
<tr>
<td>$32</td>
<td>$22</td>
</tr>
<tr>
<td>$43</td>
<td>$47</td>
</tr>
<tr>
<td>$73</td>
<td>$63</td>
</tr>
</tbody>
</table>

3. | Touchdowns | Points |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
</tr>
</tbody>
</table>

For 4 and 5, use the table at the right.

4. How much money would 9 T-shirts cost?

5. **Strategy Practice** How much more money do 10 T-shirts cost than 6 T-shirts? Explain how you determined your answer.

6. **Number Sense** Bob has 3 bookshelves that hold a total of 27 books. He adds a fourth shelf and now has 36 books. If he adds 2 more shelves, how many books can he have in total?

7. What is the missing number in the table below?

<table>
<thead>
<tr>
<th>In</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

A 21 B 25 C 30 D 45
Choose the best answer.

1. Which three-dimensional figure does NOT have any vertices?
 A Pyramid C Sphere
 B Cube D Prism

2. What fraction is shown by the shaded part in the figure below?
 A \(\frac{3}{8}\) C \(\frac{3}{8}\)
 B \(\frac{4}{8}\) D \(\frac{5}{8}\)

3. Each egg carton holds 12 eggs. A case of eggs contains 12 cartons. How many eggs are in one case?
 A 156 C 132
 B 144 D 120

4. Karin made a bracelet of beads. For every 3 yellow beads in the bracelet, she used 1 blue bead. Her bracelet has 6 blue beads. How many yellow beads did Karin use?

5. Compare. Use <, >, or =.
 \[
 \begin{array}{c}
 \frac{1}{3} \\
 \frac{1}{2}
 \end{array}
 \]

6. Brian's class has 3 fish tanks. The first tank contains 9 fish, the second has 11 fish, and the third has 13 fish. To make each fish tank have the same number of fish, what must Brian do?

7. Kevin earns $9 per hour. How much money does he earn on a day that he works 7 hours?
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>
Finding Equivalent Fractions

Equivalent fractions are fractions that name the same amount. Equivalent fractions have different numerators and denominators, but their values are equal.

You can find equivalent fractions by using fraction strips.

\[\frac{1}{4} = \frac{2}{8} \]

Find how many \(\frac{1}{8}\)s are equal to \(\frac{1}{4}\). The denominator is 8 so use \(\frac{1}{8}\) strips.

So, two \(\frac{1}{8}\) strips are equal to \(\frac{1}{4}\).

Another name for \(\frac{1}{4}\) is \(\frac{2}{8}\).

Complete each number sentence.

1. \[\frac{1}{2} = \frac{4}{8} \]

2. \[\frac{2}{3} = \frac{8}{12} \]

3. \[\frac{4}{5} = \frac{8}{10} \]

4. Name two fractions that are equivalent to \(\frac{3}{4}\).

5. **Reasoning** Larry and Willa are each reading the same book. Larry has read \(\frac{2}{3}\) of the book. Willa said that she has read \(\frac{4}{6}\) of the book, so she read more. Is Willa correct? Explain.
Finding Equivalent Fractions

Complete each number sentence.

1. \[\frac{1}{5} = \square \]
2. \[\frac{1}{3} = \square \]
3. \[\frac{1}{6} = \square \]

\[1 \] \[\frac{3}{4} = \square \]
\[\frac{3}{6} = \square \]

Find the simplest form of each fraction.

4. \[\frac{3}{12} \]
5. \[\frac{8}{10} \]
6. \[\frac{3}{6} \]

Name a fraction to solve each problem.

7. Rob colored \(\frac{1}{4} \) of a rectangle.
 What is another way to name \(\frac{1}{4} \)?

8. Three fifths of the cast in a musical have to sing. What fraction of the cast does not have to sing?

Complete each pattern.

9. \[\frac{1}{3}, \frac{2}{6}, \frac{3}{9}, \frac{4}{12} \]

11. Explain It When using fraction strips, how do you know that two fractions are equivalent?

12. Samuel has read \(\frac{5}{6} \) of his assignment. Judy has read \(\frac{10}{12} \) of her assignment. Their assignments were the same size. Which sentence is true?
 A. Samuel read more than Judy.
 B. Judy read more than Samuel.
 C. They read the same amount.
 D. They will both finish the assignment at the same time.
Choose the best answer.

1. Which unit is best to use to measure the width of a street?
 A. Centimeter
 B. Inch
 C. Foot
 D. Mile

2. Which type of triangle is the triangle below?

 [Diagram of an isosceles triangle]
 A. Scalene, acute
 B. Scalene, obtuse
 C. Isosceles, obtuse
 D. Isosceles, acute

3. Keri is selling raffle tickets. Each book of raffle tickets contains 20 tickets. She has 8 books to sell. How many tickets does Keri need to sell?
 A. 1,600
 B. 160
 C. 28
 D. 16

4. What temperature does the thermometer below show?

 [Thermometer image with a scale from 0 to 60°F]
 0
 10
 20
 30
 40
 50
 60

5. The table shows the number of tutors to the number of students in an after-school learning program.

<table>
<thead>
<tr>
<th>Tutors</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
</tr>
</tbody>
</table>

 How many students are there for each tutor?

6. How many sides does a pentagon have? Draw one.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>12</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Understanding Area

The area of a figure can be found in two ways.

A square unit is a square with sides that are each 1 unit long. You can think of the grid squares as an array.

□ = 1 square inch

□ = 1 square centimeter

Count the square units in the shaded rectangle. There are 24 squares shaded. So, the area of the rectangle is 24 square inches.

Each row has 7 squares. There are 3 rows, so multiply $3 \times 7 = 21$. The area of the rectangle is 21 square centimeters.

Find the area of each figure.

1. □ = 1 square inch

2. □ = 1 square meter

3. 6 in.

4. 5 cm

5. Reasonableness Can two different size rectangles have the same area? Explain.
Understanding Area

Find the area of each figure.

1. □ = 1 square cm
2. □ = 1 square in.
3. □ = 1 square m

4. □ = 1 square ft
5. □ = 1 square cm

7. **Draw a Picture** On the grid, draw as many different rectangles as you can with areas of 12 square units.

8. **Reasoning** Rectangular doghouses come in two sizes at the Super Z. The smaller size is 2 feet by 1 foot. The larger size is 4 feet by 2 feet. How many square feet greater is the larger doghouse?

9. **What is the area of a square with sides of 5 inches?**
 - A 10 square inches
 - B 20 square inches
 - C 25 square inches
 - D 50 square inches
Choose the best answer.

1. The center on Hector’s favorite basketball team is 7 feet tall. How tall is he in inches?
 A 112
 B 84
 C 70
 D 56

2. Which angle is an acute angle?
 A
 B
 C
 D

3. How many dimes have the same value as 6 quarters?
 A 3
 B 10
 C 12
 D 15

4. Four marathon runners are wearing blue, green, red, and white shirts, respectively. Their numbers are 3, 17, 24, and 32. Complete the table to find which number matches the green shirt.
 - The runner with the least number is wearing red.
 - Number 17 is not wearing white.
 - The runner in green is not number 17 or 32.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>17</th>
<th>24</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>white</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. A highway “yield” sign is in the shape of an equilateral triangle. How many lines of symmetry can you draw in the yield sign?
<table>
<thead>
<tr>
<th>11 × 2</th>
<th>12 × 10</th>
<th>9 × 9</th>
<th>2 × 4</th>
<th>3 × 3</th>
<th>4 × 9</th>
<th>6 × 6</th>
<th>2 × 6</th>
<th>7 × 7</th>
<th>5 × 5</th>
<th>8 × 8</th>
<th>10 × 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Day 9
Understanding Perimeter

Find the perimeter of each polygon.

1.

2.

3.

Draw a figure with the given perimeter.

4. 10 units

5. 22 units

6. A park has the shape of a trapezoid. Two of the sides are 25 meters long. The other two sides are 40 meters and 20 meters long. What is the perimeter of the park?

7. Mr. Anders wants to put a fence around his backyard. His backyard is rectangular. The lengths of the sides are 75 yards, 45 yards, 75 yards, and 45 yards. How much fencing will Mr. Anders need?

8. Explain It When finding the perimeter of a figure on a grid, why do you not count the spaces inside the grid?

9. Which rectangle has a perimeter of 16 units?
 A Length 5 units, width 3 units
 B Length 10 units, width 6 units
 C Length 8 units, width 1 unit
 D Length 6 units, width 3 units
Understanding Perimeter

The **perimeter** of a figure is the distance around it.

The perimeter is found by adding the lengths of the sides.

4 in. + 6 in. + 7 in. + 5 in. + 11 in. + 11 in. = 44 in.

The perimeter of the figure is 44 inches.

1. 4 in. 2. 4 m 3. 8 cm
 10 in. 4 m 4 cm
 12 in. 3 m 1 m

Draw a figure with the given perimeter.

4. 6 units
5. 10 units
6. 10 units

7. **Number Sense** A rectangle has a length of 5 yards and a width of 3 yards. What is its perimeter? Explain your answer.
Name

Choose the best answer.

1. Which time is different from the others?
 A quarter to 4
 B
 C
 D three fifteen

2. A building is 972 feet tall. Mr. Hernandez rounded the number to the nearest hundred. What number did Mr. Hernandez use?
 A 1,000
 B 980
 C 970
 D 900

3. Which is the missing number in the pattern below?
 63, 55, 47, ______
 A 38
 B 39
 C 40
 D 41

4. Draw the right side view of the figure below.

5. Use a centimeter ruler. What is the length of the line segment to the nearest centimeter?

6. All the sides of this pentagon are the same length. What is the perimeter of the pentagon?

7. Sissy baked 48 cookies for 12 of her friends. Each friend will receive the same number of cookies. How many cookies will each friend get?
Time to the Minute

You can skip count by fives and then count on to tell time when the minute hand is between numbers.

The minute hand is between 7 and 8.

Count by 5s from 12 to 7. That is 35 minutes.

Count 3 more minutes. There are 38 minutes.

The hour hand is between 11 and 12. The time is 11:38, or 22 minutes to 12.

Write the time shown on each clock two ways.

1. [Image of a clock showing 11:20]

2. [Image of a clock showing 10:55]

3. [Image of a clock showing 11:43]
Time to the Minute

Write the time shown on each clock in two ways.

1.

2.

3.

4.

5.

6.

7. Geometry What type of angle is formed by a clock’s hands when it is 3:00?

8. The movie Mike watched lasted 1 hour 26 minutes. How many minutes did the movie last?

9. Jan’s alarm clock sounded at the time shown on the clock below. At what time did the alarm clock sound?
 A. six ten
 B. six twenty-two
 C. six thirty-eight
 D. seven twenty-two