Novel – Tuck Everlasting

Day 1:
- Read novel Prologue to Chapter 3.
- Take post-it notes and summarize each chapter as you read.
- Complete Section I: Chapters 1-5 “Quiz Time” questions 1-6.
 - Refer to the novel and your post-it notes to answer each question.
 - Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 2:
- Read novel Chapters 4 & 5.
- Take post-it notes and summarize each chapter as you read.
- Complete Section I: Chapters 1-5 “Quiz Time” questions 7-10.
 - Refer to the novel and your post-it notes to answer each question.
 - Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 3:
- Read novel Chapters 6 & 7.
- Take post-it notes and summarize each chapter as you read.
- Complete Section II: Chapters 6-11 “Quiz Time” questions 1-6.
 - Refer to the novel and your post-it notes to answer each question.
 - Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 4:
- Read novel Chapters 8-11.
- Take post-it notes and summarize each chapter as you read.
- Complete Section II: Chapters 6-11 “Quiz Time” questions 7-10.
 - Refer to the novel and your post-it notes to answer each question.
 - Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 5:
- Read novel Chapters 12-14.

Respect *Responsibility* *Perseverance* *Appropriate Behavior* *Honesty*
• Take post-it notes and summarize each chapter as you read.
• Complete Section III: Chapters 12-18 “Quiz Time” questions 1-7.
 o Refer to the novel and your post-it notes to answer each question.
 o Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 6:

• Read novel Chapters 15-18.
• Take post-it notes and summarize each chapter as you read.
• Complete Section III: Chapters 12-18 “Quiz Time” questions 8-10.
 o Refer to the novel and your post-it notes to answer each question.
 o Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 7:

• Read novel Chapters 19-20.
• Take post-it notes and summarize each chapter as you read.
• Complete Section IV: Chapters 19-25 “Quiz Time” questions 1-7.
 o Refer to the novel and your post-it notes to answer each question.
 o Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 8:

• Read novel Chapters 21-25.
• Take post-it notes and summarize each chapter as you read.
• Complete Section IV: Chapters 19-25 “Quiz Time” questions 8-10.
 o Refer to the novel and your post-it notes to answer each question.
 o Answer neatly, in complete sentences. Write in script only if it’s neat.

Day 9:

• Read novel Epilogue
• Take post-it notes and summarize as you read.

Day 10:

• Complete Section V: Epilogue “Quiz Time” questions 1-6.
 o Refer to the novel and your post-it notes to answer each question.
 o Answer neatly, in complete sentences. Write in script only if it’s neat.

Respect *Responsibility* *Perseverance* *Appropriate Behavior* *Honesty*
Quiz Time!

1. On the back of this paper, write a description of each of the characters introduced in this section. Provide as much detail as possible about their physical characteristics, relationships, and personalities. (1) Mae Tuck (2) Winnie (3) The Stranger (4) Jessie

2. What does the “touch-me-not appearance” of the cottage mean?

__

3. Describe the woods next to the cottage.

__

4. What amazing fact about the Tucks is revealed?

__

5. Describe Mae’s one special object.

__

6. Why is Winnie thinking about running away?

__

7. What two comments did Winnie’s grandmother make about the music coming from the woods?

__

8. What do you think the man in the yellow suit wants?

__

9. What happened in the wood when Winnie went there in the morning?

__

10. What do you think Mae Tuck meant when she said, “Well, boys, here it is. The worst is happening at last”?

__
Quiz Time!

1. What was unusual about Winnie's kidnapping?

2. What would you have done in Winnie's place?

3. What did Winnie discover about the music she had heard the night before?

4. What was the fantastic secret the Tucks told Winnie?

5. On the back of this page, list at least five of the nine events that the Tucks revealed as support for their incredible story.

6. Why didn't the Tucks want Winnie to drink from the spring that morning?

7. Why do you think the man with the yellow suit was smiling?

8. How do Jesse's and Miles's views about the spring differ?

9. How was the home lifestyle of the Tucks different from that of the Fosters?

10. Why can't the Tucks stay in any one place for very long?
Quiz Time!

1. How have Winnie’s feelings changed?

2. Describe Angus Tuck.

3. In one sentence tell what Angus Tuck was trying to explain to Winnie at the pond.

4. Why did Angus Tuck say that they are “like rocks beside the road”?

5. What did Angus Tuck say might happen if everyone found out about the special spring?

6. Why do you think the Tucks are so excited and pleased about having Winnie with them?

7. What did Jesse ask Winnie to do?

8. Why hadn’t Miles taken his wife and children to drink the special water?

9. What would happen if nothing ever died?

10. What bargain did the man with the yellow suit make with the Fosters?
Quiz Time!

1. On the back of this paper, write a summary of the events that occurred in this part of the story.

2. How did the man in the yellow suit know about the Tucks?

3. What clue made it possible for the man to recognize the Tucks?

4. What do you think about the plans of the man in the yellow suit?

5. Why did Mae hit the man in the yellow suit?

6. Why had Angus Tuck looked at the body of the man on the ground almost enviously?

7. Why was it so important that Mae not go to the gallows?

8. How did Winnie feel about all that had happened?

9. How had Winnie changed since we first met her at the beginning of the book?

10. Do you agree with the constable that Winnie is a criminal because she had been an accomplice in freeing Mae from jail? Should she be punished? Give reasons for your opinions.
Section V: Epilogue

Quiz Time!

1. Explain what Winnie did to “make a difference in the world.”

2. “Stone walls do not a prison make,
 Nor iron bars a cage.”
 What do you think these lines mean in reference to the Tucks?

3. At the end of the story, we see that the toad is still around. By saving the toad from the dog and pouring the special water on it, Winnie was doing something she thought was good. Compare that to what the man with the yellow suit wanted to do.

4. Why do you think that Winnie did not drink from the special spring herself?

5. Explain why Tuck said, “Good girl.”

6. What do you think Winnie did the rest of her life?
Math – MS. MINADEO
(gminadeo@paterson.k12.nj.us)

Please check our Google Classroom daily for updates!
ALEKS: 30 Minutes Daily (I will be tracking ALEKS!)

Day One: “Positive and Negative Numbers”
Assignment: Problem Solving Workbook pages 121-124

Day Two: “Absolute Value and Ordering Numbers”
Assignment: Problem Solving Workbook pages 129-136

Day Three: “The Coordinate Plane”
Assignment: Problem Solving Workbook pages 139-142

Day Four: “Solving Inequalities”
Assignment: Problem Solving Workbook pages 215-221

Day Five: “Statistical Questions”
Assignment: Problem Solving Workbook pages 297-300

Day Six: “LCM/GCF”
Assignment: Problem Solving Workbook pages 377-380
Use your journal to help you!

Day Seven: “Multiplying Decimals”
Assignment: Problem Solving Workbook pages 371-372
Show ALL work on workbook pages!

Day Eight: “Order of Operations, Solving Expressions”
Assignment: Problem Solving Workbook pages 385-386
Show ALL work and STEPS on workbook pages!

Day Nine: “Equations and Inequalities” Tasks
Assignment: Tasks 1-4

Day Ten: “Equations and Inequalities” Tasks
Assignment: Tasks 5-8

Respect *Responsibility* *Perseverance* *Appropriate Behavior* *Honesty*
Study the example showing how to name ordered pairs on the coordinate plane. Then solve problems 1–9.

Example

An ordered pair \((x, y)\) describes the location of a point on the coordinate plane.

The first number in the ordered pair is the \(x\)-coordinate. It tells how many units the point is from the origin on the \(x\)-axis.

The second number is the \(y\)-coordinate. It tells how many units the point is from the origin on the \(y\)-axis.

The ordered pair for point \(E\) is \((1, 4)\).

The ordered pair \((0, 0)\) names the origin.

1. The \(x\)-coordinate of point \(F\) is ____ because it is ____ unit(s) to the right of the origin. The \(y\)-coordinate of point \(F\) is ____ because it is ____ unit(s) up from the origin. The ordered pair for point \(F\) is (___, ___).

2. Ray says that the ordered pair for point \(G\) is \((1, 2)\). Is Ray correct? Why or why not?

3. Write the ordered pair for point \(H\). Explain how you got your answer.

4. Plot and label point \(J\) at \((1, 2)\) on the coordinate plane.

Vocabulary

coordinate plane a two-dimensional space formed by two perpendicular number lines called axes.

origin the point \((0, 0)\) where the \(x\)-axis and \(y\)-axis intersect.

ordered pair a pair of numbers \((x, y)\) that describe the location of a point on the coordinate plane.
Use the coordinate plane to solve problems 5–7.

5 Write the ordered pairs for points P, Q, and R.

6 Use the ordered pairs in the table to plot and label points S, T, and U on the coordinate plane.

<table>
<thead>
<tr>
<th>Point</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-coordinate</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>y-coordinate</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

7 Choose a point on the coordinate plane. Describe its location in relation to the origin.

Use the following situation to solve problems 8–9.

Max drew a map of his neighborhood with his house located at the origin.

8 Which ordered pair describes the location of the library?
 - A (1, 1)
 - B (1, 5)
 - C (5, 1)
 - D (5, 5)

9 The park is located at (7, 5). Plot and label the location of the park on the map. Describe the location of the park in relation to the location of the school.
Identify Positive and Negative Numbers

Study the example showing positive and negative numbers on a number line. Then solve problems 1–10.

Example

Gareth is graphing some numbers and their opposites on the number line below. He has partially completed the number line as shown.

[Diagram of a number line with numbers -5, 0, 2, and 4, and empty slots for -3, -1, 1, and 3.]

1 Fill in the missing numbers on Gareth’s number line.

2 Choose a pair of numbers from the number line that you know are opposites. Explain how you know that the numbers are opposites.

3 Graph a point at 4 and at the opposite of 4 on the number line.

4 Mary says that the opposite of 0 is 0. Is she correct?

5 Name two numbers that are not integers but that are opposites. Explain how you know.

Vocabulary

- **Opposites**: numbers that are the same distance from 0 but on opposite sides of 0.
- **Integers**: the set of whole numbers and their opposites.
Solve.

6 Use the number line below to graph and label each number and its opposite.

\[
\begin{array}{ccc}
\frac{11}{2} & -3.5 & 2.5 \\
\end{array}
\]

7 Pavel said that he could graph \(-5\) by counting 5 units to the left of 5. Is he correct? Explain.

8 Write a positive or a negative number to represent each situation.
 a. 3 degrees below 0°F \(\ldots\)
 b. 6 feet above sea level \(\ldots\)
 c. lost 5 pounds \(\ldots\)
 d. found $4 \(\ldots\)

9 A family wants to save $100 each month. They record their progress toward this goal at the end of each month. In January they saved $120 and recorded +$20 at the end of the month. What should they record for the month of February if they only saved $80 that month? Explain.

10 When would you use a negative number to describe a real-world amount? Give an example.
Prerequisite: Understanding Integers

Study the example problem showing how to use positive and negative integers. Then solve problems 1–7.

Example

The model shows the temperatures in 11 towns one winter morning. Which town has a temperature that is the opposite of the temperature in Town C?

The temperature in Town C is 3°C. The opposite of 3 is the same distance from 0 but in the opposite direction. The temperature in Town H is –3°C. So Town H has the opposite temperature of Town C.

1. Which town has a temperature of –4°C?

2. How can you find the town with a temperature that is the opposite of –4°C? Name the town with that temperature.

3. Barry pairs each town with another town that has the opposite temperature. Which town(s) cannot be paired? Explain.

Vocabulary

positive number a number greater than 0.

negative number a number less than 0.

opposite two numbers are opposites if they are the same distance from 0 on the number line but on opposite sides of 0.

2 is a positive number.

–2 is a negative number.

2 and –2 are opposites.
Solve.

4 Graph and label the numbers 1.75, −2.5, and 0.2 on the number line. Then graph and label their opposites.

[Number line diagram]

5 Graph and label the numbers −3 1/2, −2 1/4, and 1/2 on the number line. Then graph and label their opposites.

[Number line diagram]

6 Write two numbers that fit each description.

a. A positive number and a negative number between 1 and −1

b. A whole number and its opposite between −0.5 and 0.9

c. A decimal and a fraction between −4 and −3

7 Write your own problem about money or elevation that uses a number and its opposite. Solve the problem. Then explain what 0 means in your problem.
Compare Positive and Negative Numbers

Study the example problem showing how to compare numbers. Then solve problems 1–6.

Example

Phil and Lorena are playing golf. Phil’s score after the first round is \(-1\). Lorena’s score is \(-4\). The player with the lower score is the winner. Who wins?

Graph the two scores on a number line.

\[
\begin{array}{ccccccc}
& & & \text{Lorena} & & & \\
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 \\
& & & \text{Phil} & & & \\
\end{array}
\]

Numbers increase from left to right along a number line. Use an inequality to compare the scores.

\[-4 < -1\]

Lorena’s score is the lower score, so Lorena wins.

1. Write another inequality to compare the scores.

2. Rory joins the game for the second round and wins that round. What can you say about where his score would appear on the number line? Explain.

3. Rory, Lorena, and Phil play a third round of golf. Lorena’s score is 1 in the third round. Phil ties Rory’s score at \(-3\). Write an inequality that shows why Lorena lost that round.
Solve.

4 When asked to compare \(-9\) and 2, Joshua wrote \(-9 > 2\). Is Joshua correct? If not, explain and correct his error.

5 Tom is thinking of two numbers, \(a\) and \(b\), where \(a\) is a positive number and \(b\) is a negative number.
 a. Write two inequalities that Tom can use to compare \(a\) and \(b\). Explain how you know.

 b. Choose two numbers for \(a\) and \(b\), and then use them to write two inequalities.

6 Juanita was given this information about three integers, \(n\), \(m\), and \(p\):
 \(n < 0, m < n, n < p\)
 a. Graph three points on a number line that could represent \(n\), \(m\), and \(p\). Explain your choices.

 \[\text{Number Line: } \ldots -5 -4 -3 -2 -1 0 1 2 3 4 5\]

 b. Write two inequalities comparing \(m\) and \(p\). Explain.

Ordering Positive and Negative Numbers

Study the example problem showing how to order positive and negative numbers. Then solve problems 1–7.

Example

Five students draw number cards at random and make a human number line. The table shows the number that each student drew.

<table>
<thead>
<tr>
<th>Student</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ina</td>
<td>−1.5</td>
</tr>
<tr>
<td>Joe</td>
<td>2.1</td>
</tr>
<tr>
<td>Kit</td>
<td>−3.2</td>
</tr>
<tr>
<td>Larry</td>
<td>1.7</td>
</tr>
<tr>
<td>Mal</td>
<td>−0.4</td>
</tr>
</tbody>
</table>

From left to right, how did the students arrange themselves to form the number line?
Plot each number on a number line.

1. Which student has the least number? Explain how you know.

2. Which student has the greatest number? Explain how you know.

3. Order the students from least to greatest.

4. Ned draws a number card with a −1. Where should Ned stand along the line of students?
Solve.

5 Abey made a table showing the lowest temperature for five towns during one week in winter.

<table>
<thead>
<tr>
<th>Town</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>−5.4</td>
</tr>
<tr>
<td>K</td>
<td>1.8</td>
</tr>
<tr>
<td>L</td>
<td>−2.3</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>P</td>
<td>−5.7</td>
</tr>
</tbody>
</table>

a. Order the towns from coldest to warmest.

b. The lowest temperature in Town Q that week was 0.6°C. If Abey wants to include Town Q in the ordered list, where should he put it?

6 The table shows the position of four fish relative to the surface of the water. Name all the fish swimming deeper than the carp.

<table>
<thead>
<tr>
<th>Fish</th>
<th>Position (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bass</td>
<td>−15\frac{1}{2}</td>
</tr>
<tr>
<td>Trout</td>
<td>−9\frac{7}{8}</td>
</tr>
<tr>
<td>Pike</td>
<td>−20\frac{1}{5}</td>
</tr>
<tr>
<td>Carp</td>
<td>−15\frac{3}{4}</td>
</tr>
</tbody>
</table>

7 Plot points A, B, C, and D on a number line so that each statement is true: \(B < 0, A < C, D > 0, B > C \).
Absolute Value and Ordering Numbers

1. A bird is flying at an elevation of 14 feet above the surface of the water. A fish is swimming the same distance below the surface of the water.
 a. What number represents the position of the fish relative to the surface of the water? ______
 b. How does the absolute value of the number you wrote show that the distances are the same? Explain.

2. If \(x > y \), which statement must be true?
 A. On a number line, \(y \) is to the left of \(0 \).
 B. On a number line, \(x \) is to the right of \(0 \).
 C. On a number line, both \(x \) and \(y \) are positive.
 D. On a number line, \(y \) is to the left of \(x \).

3. Ganesa wanted to write numerical examples for the inequality \(a < b \), with the conditions described in the table. One of the conditions cannot be met. Complete the table. Indicate which condition cannot be met.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Numerical Example for (a < b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a < 0) and (b < 0)</td>
<td></td>
</tr>
<tr>
<td>(a < 0) and (b > 0)</td>
<td></td>
</tr>
<tr>
<td>(a > 0) and (b < 0)</td>
<td></td>
</tr>
<tr>
<td>(a > 0) and (b > 0)</td>
<td></td>
</tr>
</tbody>
</table>
The table shows the temperatures for five towns.

<table>
<thead>
<tr>
<th>Town</th>
<th>Z</th>
<th>Y</th>
<th>X</th>
<th>W</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>-1.9</td>
<td>7.4</td>
<td>-12.2</td>
<td>6</td>
<td>-5.7</td>
</tr>
</tbody>
</table>

What is the correct order from warmest to coldest?

A X, V, Z, W, Y
B Z, V, X, W, Y
C X, Y, W, V, Z
D Y, W, Z, V, X

Reyhan chose C as the correct answer. How did she get that answer?

Look at the number line below. Select whether each statement is True or False.

L Q D P

a. L > P
 [] True [] False
b. Q < D
 [] True [] False
c. L < Q
 [] True [] False

A teacher poses this problem: I am thinking of four numbers, a, b, c, and d, where $a < 0$, $b < 0$, $c > 0$, and $d > 0$. What else do you need to know to plot the four numbers in the correct order on a number line? What two questions should you ask? Explain how the answers would help you plot the numbers on a number line.
Prerequisite: Graph Points

Study the example showing how to plot points on a coordinate grid. Then solve problems 1–11.

Example

The location of a point is named with an x-coordinate and a y-coordinate. The coordinates are written as an ordered pair, (x-coordinate, y-coordinate). Follow these steps to plot point A at (3, 4).

- Start at the origin.
- Move 3 units to the right.
- Move 4 units up.
- Label the point A.

1. What ordered pair describes the origin? ________
2. What are the coordinates of point A?
 x-coordinate: ______ y-coordinate: ______
3. Along which axis do you count each number of units in order to plot point A?
 3 units to the right: ___-axis 4 units up: ___-axis
4. Plot a new point at (4, 3). Label the point C.
5. Zachary says that point C has the same location as point A because both points have the same coordinates. Is Zachary right? Explain why or why not.

Vocabulary

x-coordinate a point's horizontal distance from the origin along the x-axis.
y-coordinate a point's vertical distance from the origin along the y-axis.
Solve.

Use the coordinate plane at the right to solve problems 6–9.

6 Plot and label the following points.
 \[Q(5, 5) \quad R(7, 3) \quad S(2, 8) \]

7 Choose one point from problem 6. Complete the following statements to describe how you plotted the point.

 a. Start at (________, ________).

 b. Move ________ units to the right. Move ________ units up.

 c. Label the point ________.

8 Plot points at \((0, 3), (0, 1),\) and \((0, 5)\). What is true about all points with an \(x\)-coordinate of 0?

9 Plot points at \((2, 0), (4, 0),\) and \((3, 0)\). What is true about all points with a \(y\)-coordinate of 0?

Use the coordinate plane at the right to solve problems 10–11.

10 Write ordered pairs for four points that you can plot on the coordinate plane. Each ordered pair must have a \(y\)-coordinate that is 2 units less than its \(x\)-coordinate. Plot the points.

11 Describe a pattern for the points you plotted in problem 10.
Graphing on the Coordinate Plane

Study the example showing how to graph on the coordinate plane. Then solve problems 1–7.

Example

The table shows the locations of exhibits at a science museum. Graph each exhibit on the coordinate plane.

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Fossils</th>
<th>Birds</th>
<th>Planets</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
<td>(3, 2)</td>
<td>(-1, -3)</td>
<td>(2, -2)</td>
<td>(-3, 1)</td>
</tr>
</tbody>
</table>

For each ordered pair in the table, start at the origin, move left or right according to the x-coordinate, and then move up or down according to the y-coordinate.

1. Which exhibit is located at point E on the coordinate plane?

2. What are the x- and the y-coordinates of point E?

3. How are the x-coordinate and the y-coordinate in an ordered pair related to the origin?

4. Complete the table below to describe the location of each exhibit.

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Location from the Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossils</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td>Planets</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
</tr>
</tbody>
</table>
Solve.

Use this information for problems 5–6.

You can use a coordinate plane to represent the locations of different activities at a summer camp. The ordered pairs in the table show the location of each activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Canoeing</th>
<th>Swimming</th>
<th>Hiking</th>
<th>Art</th>
<th>Fishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
<td>(−6, 5)</td>
<td>(2, −2)</td>
<td>(−3, −3)</td>
<td>(4, 6)</td>
<td>(−4, 0)</td>
</tr>
</tbody>
</table>

5 Graph each activity as a point on the coordinate plane. Label each point with the first letter of the activity.

6 Describe the location from the origin of each point in problem 5.

7 What are the signs of the coordinates of a point in each of the four quadrants?
Prerequisite: Solve Equations

Study the example problem showing how to solve an equation. Then solve problems 1–7.

Example
Taryn planted 91 tulip bulbs in 7 rows. She planted the same number of bulbs in each row. How many bulbs did she plant in each row?

Create a bar model to represent the 7 rows and the total number of bulbs that Taryn planted.

1 What does \(b \) represent in the bar model?

2 What does each part of the bar model represent?

3 Explain how the model shows that \(7b = 91 \).

4 What operation will you use to solve the equation \(7b = 91 \)? Solve the equation to find the number of bulbs, and justify each step you take to solve the equation.

Show your work.

Solution: __
Solve.

5 Milo and Audrey sold tickets to the school concert. Milo sold 14 fewer tickets than Audrey. If Milo sold 32 tickets, how many tickets did Audrey sell?

Show your work.

Solution:

6 Carmen buys 4 daisies and some roses to make a flower arrangement. The number of daisies is \(\frac{1}{3} \) of the number of roses that she buys. How many roses does she buy?

Show your work.

Solution:

7 Write a multiplication equation and a subtraction equation that both involve a fraction and have the same solution. Solve your equations to show that the solutions are the same.
Lesson 20

Write and Solve an Inequality

Study the example problem showing how to write and solve an inequality for a real-world problem. Then solve problems 1–9.

Example

Mr. Gomez gets a notice from the bank when the amount in his checking account drops below $20. For what amounts will Mr. Gomez receive a notice from the bank?

Use words and symbols to represent the situation. Let x represent the amount in Mr. Gomez's account. When x is less than 20, the bank will send a notice.

$x < 20$

Graph the inequality to show all of the solutions. Use an open circle shows that 20 is NOT a solution.

1 Why is the graph in the example shaded to the left?

2 Is -10 a solution? Substitute -10 into the inequality in the example to check.

3 Name an amount that is NOT a solution to the inequality. Explain how you know.

4 Suppose the bank sent Mr. Gomez a notice whenever the amount in his account dropped to 15 or less. How would the graph in the example change?

Vocabulary

inequality a statement that contains the symbol $<$, $>$, \leq, or \geq. For any inequality, there are many possible solutions. These are inequalities.

$x < 5$

$x > -2$

$x \leq 15$

$x \geq 0$
Solve.

5 Write the inequality shown on each graph.

a.

b.

6 The children at Lincoln School go outside for recess if the temperature is 3°C or higher. For what temperatures will the students go outside? Write an inequality to represent this situation. Then graph the solution.

7 If your score on a computer game is less than 0, you lose your next turn. For what scores will you lose your turn? Write an inequality to represent this situation. Then graph the solution.

8 Write a real-world situation for this inequality: \(x \geq 9 \)

9 Explain how an equation and an inequality are different. Give an example of each.
More Inequalities

Study the example problem showing how to write and solve an inequality. Then solve problems 1–9.

Example

You need to be at least 40 inches tall to ride on the roller coaster at the amusement park. What are some possible heights for riders? Write an inequality to represent the heights, and graph the solution on a number line.

Use symbols to represent the situation. Let x be the possible heights in inches for riders.

$x \geq 40$

Graph the inequality to show all of the solutions.

1. Leigh is 40 inches tall. Can she ride on the roller coaster?

2. Brennon is 38 inches tall. Can he ride on the roller coaster? Use the graph to explain your answer.

3. Joy wrote the inequality $40 \leq x$ to represent the situation. Is her inequality correct?

4. Suppose this graph represents a problem about the height of people riding the roller coaster. How would the situation have changed?
Solve.

Use this situation for problems 5–6.

You must spend at least $10 at the grocery store to get a free greeting card.

5 Write an inequality to represent the amount you need to spend to get a free greeting card. Then graph the solution on the number line.

\[\underline{\text{\begin{tabular}{c}
4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24
\end{tabular}}\quad } \]

6 If you spend $9.50, will you get a free greeting card? Use the graph to explain how you know.

7 Zarina is scuba diving. She will not dive below \(-30\) meters relative to the surface of the water. Write an inequality that represents this situation. Is \(-20\) a solution to the inequality? Explain how you know.

8 Write an inequality that has the solution shown on the graph. Then write a real-world situation for the inequality.

\[\underline{\text{\begin{tabular}{c}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}}\quad } \]

9 Markim looks at the graph below and says that \(-1\) is the only possible negative solution. Do you agree or disagree? Explain.

\[\underline{\text{\begin{tabular}{c}
-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{tabular}}\quad } \]
Solve Inequalities

Solve the problems.

1. Write an inequality for each graph.
 a. [Graph with arrows and shaded region]
 b. [Graph with arrows and shaded region]

 What does the direction of the arrow on the shaded line tell you about the inequality?

2. Samuel wants to eat at least 15 grams of protein each day. Let \(x \) represent the amount of protein he should eat each day to meet his goal. Which inequality represents this situation?
 A \(x < 15 \) C \(x \leq 15 \)
 B \(x > 15 \) D \(x \geq 15 \)

 Karli chose B as the correct answer. How did she get that answer?

3. The graph shows information about the low temperature in a particular city in degrees Celsius each day during one week in January. Write an inequality for this situation. Then write in words what the graph shows about the temperature readings.

 What are some words that describe a situation in which the shaded line on the graph points left?
4. Kalista practices the piano for at least 8 hours each week. Write an inequality for this situation. Then graph the solution on the number line.

Does “at least” include 8 as a solution?

-2 0 2 4 6 8 10 12 14 16 18

5. Which of these values is a solution to the inequality \(x - 1 \geq 6 \)?

7 3 1 2 2.5 10

Show your work.

Solution:

6. Consider the inequality \(x > -0.75 \). Tell whether each statement is True or False.

a. -0.75 is a solution to the inequality.
 □ True □ False

b. There are many solutions to this inequality.
 □ True □ False

c. All of the solutions to the inequality are negative.
 □ True □ False

d. The inequality \(-0.75 < x\) is equivalent to the given inequality.
 □ True □ False

e. -4.5 is a solution to the inequality.
 □ True □ False
Prerequisite: How can you use a line plot to interpret data?

Study the example problem showing how to make a line plot. Then solve problems 1–7.

Example
Anna planted radish seeds in her vegetable garden. At the end of two weeks, she measured the height of each radish plant to the nearest $\frac{1}{2}$ inch and recorded her data in a table. How can Anna show this data in a line plot?

Make an X to stand for each plant in the table. For example, the line plot below shows that two plants were $\frac{1}{2}$ inch tall.

<table>
<thead>
<tr>
<th>Height (Inches)</th>
<th>Number of Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>2</td>
</tr>
<tr>
<td>$1\frac{1}{2}$</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>$2\frac{1}{2}$</td>
<td>7</td>
</tr>
<tr>
<td>$3\frac{1}{2}$</td>
<td>2</td>
</tr>
</tbody>
</table>

1. How can you use the line plot to tell how many plants are 2 inches tall?

2. Consider how the data in the line plot is clustered. What does the line plot say about the plant heights?
Solve.

Use this situation and the line plot for problems 3–6.

Colton puts grapes in plastic bags to sell at the farmer’s market. He weighs each bag and records the weights in a line plot.

3 What is the difference in weight between the heaviest bag and the lightest bag of grapes?

Show your work.

4 How many bags of grapes weigh more than 1 pound and less than 2 pounds?

5 Describe two different ways that a customer could buy 4 1/4 pounds of grapes.

6 Greg wants to buy two bags of grapes that have a total weight of 3 3/4 pounds. Is there a way that he can do this? Explain how you know.

7 Describe a different set of data that you could display on a line plot.
Identify Statistical and Non-statistical Questions

Study the example showing how to determine whether a question is statistical or not. Then solve problems 1–7.

Example

Abigail asked her classmates two questions. Are the questions statistical or not? Explain your answer.

What is your favorite after-school activity? On what day does the computer club meet?

This is a statistical question because you can expect a variety of answers. You can use the answers to make a prediction about a larger group. This is not a statistical question because no matter who you ask, the answer is always the same.

1 Explain how you can tell whether a question is statistical or non-statistical.

2 Maxwell asked 20 classmates these questions. Determine whether each question is statistical or non-statistical. Explain your answer.

a. How do you travel to school?

b. How many students in the class ride the bus to school?

c. What time do you get up on school mornings?

Vocabulary

statistical question a question that can have a variety of answers and can be used to make a prediction about a larger group.
Solve.

Use the following situation and table to solve problems 3–5.

Paulo asked 20 sixth graders a question and then displayed the results in this table.

<table>
<thead>
<tr>
<th>Number of Pets</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>more than 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Students</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

3 What question could Paulo have asked?

4 If Paulo asked 20 different sixth graders the same question, would he most likely get exactly the same results? Explain your thinking.

5 Based on Paulo’s results, what prediction could Paulo make about the sixth graders in his school?

6 Write a statistical question and a non-statistical question that you could ask your classmates about computer games.
 statistical: __
 non-statistical: __

7 Ariel wanted to ask her classmates a statistical question. She decided to ask them “How many books have you read this month?” Is Ariel’s question statistical? Explain.

 __
<table>
<thead>
<tr>
<th></th>
<th>Find the greatest common factor.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24 and 20: __________</td>
<td>2</td>
<td>36 and 42: __________</td>
</tr>
<tr>
<td>3</td>
<td>16 and 32: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12 and 8: __________</td>
<td>5</td>
<td>80 and 70: __________</td>
</tr>
<tr>
<td>6</td>
<td>50 and 14: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>100 and 75: __________</td>
<td>8</td>
<td>15 and 18: __________</td>
</tr>
<tr>
<td>9</td>
<td>14 and 21: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40 and 60: __________</td>
<td>11</td>
<td>25 and 45: __________</td>
</tr>
<tr>
<td>12</td>
<td>33 and 77: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>36 and 81: __________</td>
<td>14</td>
<td>64 and 40: __________</td>
</tr>
<tr>
<td>15</td>
<td>35 and 28: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17 and 34: __________</td>
<td>17</td>
<td>15 and 28: __________</td>
</tr>
<tr>
<td>18</td>
<td>3 and 69: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>18 and 28: __________</td>
<td>20</td>
<td>27 and 63: __________</td>
</tr>
<tr>
<td>21</td>
<td>20 and 45: __________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>54 and 24: __________</td>
<td>23</td>
<td>18 and 45: __________</td>
</tr>
<tr>
<td>24</td>
<td>72 and 64: __________</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Find the greatest common factor.

1. 21 and 28:
2. 50 and 75:
3. 15 and 30:

4. 6 and 9:
5. 60 and 80:
6. 16 and 40:

7. 30 and 48:
8. 12 and 18:
9. 16 and 24:

10. 40 and 90:
11. 44 and 24:
12. 26 and 16:

13. 12 and 25:
14. 7 and 42:
15. 35 and 55:

16. 44 and 99:
17. 27 and 72:
18. 13 and 39:

19. 45 and 81:
20. 40 and 25:
21. 20 and 42:

22. 120 and 70:
23. 22 and 77:
24. 72 and 63:

Name: ____________________________
Find the least common multiple.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 and 7:</td>
<td>5 and 6:</td>
</tr>
<tr>
<td>2</td>
<td>3 and 8:</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4 and 6:</td>
<td>6 and 9:</td>
</tr>
<tr>
<td>4</td>
<td>10 and 6:</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 and 8:</td>
<td>3 and 4:</td>
</tr>
<tr>
<td>6</td>
<td>5 and 7:</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8 and 9:</td>
<td>12 and 8:</td>
</tr>
<tr>
<td>8</td>
<td>8 and 10:</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9 and 7:</td>
<td>2 and 11:</td>
</tr>
<tr>
<td>10</td>
<td>6 and 12:</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11 and 9:</td>
<td>9 and 4:</td>
</tr>
<tr>
<td>12</td>
<td>3 and 6:</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5 and 9:</td>
<td>11 and 8:</td>
</tr>
<tr>
<td>14</td>
<td>10 and 5:</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13 and 39:</td>
<td>4 and 16:</td>
</tr>
<tr>
<td>16</td>
<td>7 and 6:</td>
<td></td>
</tr>
</tbody>
</table>
Least Common Multiples—Skills Practice

Find the least common multiple.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 and 5: _______</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7 and 6: _______</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8 and 12: _______</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>4 and 9: _______</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>7 and 8: _______</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>8 and 4: _______</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>4 and 10: _______</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>7 and 28: _______</td>
<td>23</td>
</tr>
</tbody>
</table>

©Curriculum Associates, LLC Copying is permitted for classroom use.
Multiply Decimals—Skills Practice

Multiply.

1. 2.1 \times 0.76
2. 52.4 \times 4.5
3. 4.52 \times 8.9
4. 5.8 \times 7.4

5. 0.97 \times 0.23
6. 63.52 \times 4.7
7. 2.7 \times 0.25
8. 8.35 \times 0.46

9. 0.813 \times 4.6
10. 0.83 \times 5.8
11. 12.3 \times 6.5
12. 0.78 \times 42.5

13. 912.5 \times 0.85
14. 3.6 \times 8.14
15. 0.64 \times 31.8
16. 5.6 \times 21.42
Multiply Decimals—Skills Practice

Multiply.

1. \(\frac{4.1 \times 0.87}{ } \)
2. \(\frac{65.5 \times 3.2}{ } \)
3. \(\frac{0.65 \times 3.9}{ } \)
4. \(\frac{0.924 \times 6.2}{ } \)

5. \(\frac{34.78 \times 0.12}{ } \)
6. \(\frac{7.65 \times 0.28}{ } \)
7. \(\frac{0.69 \times 0.34}{ } \)
8. \(\frac{36.25 \times 7.3}{ } \)

9. \(\frac{0.65 \times 24.6}{ } \)
10. \(\frac{73.8 \times 42.9}{ } \)
11. \(\frac{21.4 \times 5.6}{ } \)
12. \(\frac{6.28 \times 3.65}{ } \)

13. \(\frac{2.5 \times 7.39}{ } \)
14. \(\frac{691.5 \times 0.75}{ } \)
15. \(\frac{0.43 \times 61.5}{ } \)
16. \(\frac{7.8 \times 34.16}{ } \)
Order of Operations—Skills Practice

Evaluate the expression.

1. $8 + 7 \times 2 = \underline{22}$
2. $0.4 \times 20 + 5 = \underline{9}$

3. $34 - 4 \times 8 = \underline{-8}$
4. $26 + 12 \times 0.5 = \underline{33}$

5. $24 \div 2 + 6 = \underline{17}$
6. $6 + 5 \times 4^2 = \underline{54}$

7. $18 - 6^2 \div 3 = \underline{1}$
8. $16 - 12 \times 0.25 = \underline{10}$

9. $4 + 9 \div 3^2 = \underline{5}$
10. $8^2 \div 2 + 6 = \underline{42}$

11. $26 \div 0.5 + 6 = \underline{32}$
12. $54 + 0.2 \times 60 = \underline{60}$

13. $54 \div 6 \times 3 = \underline{9}$
14. $191 - 2 \times 3^4 = \underline{25}$

15. $48 - 0.3 \times 30 = \underline{24}$
16. $46 - 7 + 14 = \underline{53}$

17. $72 \div 2^3 + 1 = \underline{10}$
18. $41 - 0.5 \times 46 = \underline{22}$

19. $6^2 \div 9 \times 2 = \underline{4}$
20. $4^3 + 32 \div 8 = \underline{30}$
Evaluate Expressions with Variables—
Skills Practice

Evaluate the expression.

1. $s = 7; 6s^2 = \underline{\hspace{2cm}}$

2. $x = 3; 4x^2 + 2 = \underline{\hspace{2cm}}$

3. $n = \frac{1.2}{8}; \frac{n}{n} = \underline{\hspace{2cm}}$

4. $x = \frac{1}{6}; 18x + 4 = \underline{\hspace{2cm}}$

5. $x = 7; \frac{4x + 8}{2} = \underline{\hspace{2cm}}$

6. $p = 0.5; 42 - 42p = \underline{\hspace{2cm}}$

7. $x = 0.25; 48x - 3 = \underline{\hspace{2cm}}$

8. $a = 3; a^3 = \underline{\hspace{2cm}}$

9. $y = 84; \frac{y}{4} - 15 = \underline{\hspace{2cm}}$

10. $c = 35; \frac{9c}{5} + 32 = \underline{\hspace{2cm}}$

11. $n = 0.5; \frac{8}{n} + 8 = \underline{\hspace{2cm}}$

12. $x = 3; 169 - 2x^4 = \underline{\hspace{2cm}}$

13. $a = 3; 12a^2 = \underline{\hspace{2cm}}$

14. $w = \frac{1}{5}; 38 - 15w = \underline{\hspace{2cm}}$

15. $x = 9; 8x + 3 = \underline{\hspace{2cm}}$

16. $m = 2; \frac{16}{2m} = \underline{\hspace{2cm}}$

17. $x = 7; x^2 - 5^2 = \underline{\hspace{2cm}}$

18. $p = 25; \frac{p}{100}(120) = \underline{\hspace{2cm}}$
Which Equations are Correct?

A. Which of the following accurately represents each situation?
 Maggie has 7 more toys than Jane. (J is Jane's number of toys.)

 Maggie's toys = J + 7

 7 + Maggie's toys = J

 7 x J = Maggie's toys

 Tommy has 3 times as many books as Lashay. (L is Lashay's number of books.)

 Tommy's books = 3 x L

 L = 3 x Tommy's books

 L x L + L = Tommy's books

 Bob is 36 years older than Davian. (D is Davian's age.)

 D + 36 = Bob's age

 Bob's age + 36 = D

 Bob's age - 36 = D

 D - 36 = Bob's age

B. How old is Bob if Davian is:

 2?

 5?

 10?

 20?

C. Are there any numbers that can be substituted for D (Davian's age) that do not make sense? If yes, what are they?
Jamie follows the same route every day. In the morning, she walks to school. After school, she stops by her favorite restaurant to buy a smoothie. She then meets her friends at the park for a game of soccer before heading home for dinner. She always walks on the sidewalk, indicated by the grid lines below. Each block represents 100 feet.

A. Determine the distance that Jamie walks in this route during a school week. Show all work and explain your reasoning.
B. As a project for her health class, Jamie keeps track of the distance that she walks in this route over a month. A classmate looks at the data closely and exclaims: "I think there may be something wrong with your total distance. There's no way you could have walked 100,000 feet!"

Does Jamie's data seem reasonable or is her classmate correct? Support your answer mathematically.

C. How far does Jamie walk in three months? In six months? Write an expression to help you determine how far Jamie walks in any number of months.

Extension: How many days will it take Jamie to walk 28,000 feet? Write an equation using a variable that will help them determine the answer to this problem.
The Price of Gasoline

A. The light in Colleen's car goes on, indicating that her gas tank is empty. Colleen drives to the gas station and fills her car with gasoline. She knows that her gas tank holds 14 gallons and the total cost is $49.70. What is the price of each gallon of gas?

Write an equation with a variable that models the situation. Use the equation to solve the problem.

B. Colleen pays for the gas. She hands the cashier money to pay for the total cost of $49.70. The cashier gives Colleen $10.30 back in change. How much did Colleen hand to the cashier?

Write an equation with a variable that models the situation. Use the equation to solve the problem.

C. How are the equations you wrote for Parts A and B alike? How are they different?
Name______________________________

School Fundraiser

Cheyla is participating in her school fundraiser. This year, students are selling cookbooks with recipes that families in the school contributed. For every cookbook the students sell, the school makes $2.25.

A. How much does Cheyla earn for the school if she sells:

- 5 cookbooks?
- 17 cookbooks?
- 29 cookbooks?
- \(n \) cookbooks?

B. The school needs to raise $5,000.00. How many cookbooks do the students need to sell in order to reach the school’s goal? Write an equation with a variable to represent the problem.

C. If the students could only sell 1500 cookbooks, how much would the school need to make on each cookbook in order to meet its goal of $5,000.00? Write an equation with a variable to represent the problem.
Batting Practice

Sanjit has saved $50.00. He wants to figure out how many trips he can make to the batting cage to practice his baseball skills. Each hour at the batting cage costs $6.25.

A. Write an equation using a variable to determine how many hours Sanjit can afford at the batting cage. Solve the equation. Explain how you know that your answer is reasonable.

B. Sanjit wants to take his cousin with him, which now means it will cost $12.50 per hour. He writes several equations to determine the number of hours he and his cousin can afford to spend at the batting cage. For each of Sanjit’s equations, decide if it represents the situation, then explain why or why not. In your explanations, be sure to identify the meaning of the numbers and variable in the equation.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Does the equation represent the situation?</th>
<th>Why or why not?</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 12.50 = t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 ÷ t = 12.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(6.25) + t = 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.50t = 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 ÷ 12.50 = t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eating Cereal

Michael's brother Brian likes Fruity Circle cereal. Michael gives his brother 10 Fruity Circles every day.

A. How many Fruity Circles will Brian eat in:

12 days?

3 weeks?

\(d\) days?

The box of Fruity Circles contains 12 cups of cereal and each cup holds approximately 150 Circles.

B. Brian says he can eat for at least 10 days from the box of Fruity Circles.
Michael says Brian can eat for more than 100 days.
Are both boys right? Justify your answer.

Extension: The brothers can eat every day for how many days if Brian eats 10 Circles and Michael eats 25 Circles every day?
My Inequality is Bigger than Yours

On a very cold day, Shamir and Eli walk home from school together.

Shamir says, "It has to be below 30° outside."
Eli says, "I bet it is below 0° outside."

A. Write inequalities to represent both boys' statements.

B. Represent the solutions to both boys' inequalities on the number lines below.

C. Shamir makes a conjecture: "All of the temperatures that make your statement true also make my statement true." Eli disagrees. Is Shamir correct? Support your answer with mathematical reasoning.
Each 6th grader who joined the middle school track team received a letter in the mail:

Dear Team Member,

Attached you will find a map of the community park with a trail you can run every day. I expect members of my team to run at least 4 miles a day.

Good luck and congratulations on making the team!

Sincerely,
Coach Hamstring

For each of the team members below, write an equation or inequality to represent their training. Explain what the meaning is of the numbers and variables. Represent the solution to the equation/inequality on the number line.

A. Janna runs more than the coach asks her to.
B. Sammy runs the exact minimum that the coach asks her to.

C. Erick wants to work hard and become a top runner on the team. He runs more than twice the amount that the coach asks him to.

D. Aaron runs less than the coach asks him to.